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Abstract 

This work concerns the calculations of interacting boson fermion-fermion model (IBFFM) for the odd-odd nucleus 
134

Cs. The 

energy levels (positive and negative parity states), electric transition probability B(E2), magnetic transition probability B(M1), 

quadrupole and magnetic dipole moments have been studied in this work. The IBFFM results are compared with the available 

experimental data. In the present work, the IBFFM pattern of total and parametric dependent level densities for the odd-odd 

nucleus 
134

Cs is investigated and compared to the pattern found in previous investigations in the framework of combinatorial 

and spectral distribution approaches. When comparing the theoretical values with the available experimental values, it was 

found that there is a good match between them. This is due to the values of the Hamiltonian parameters that were found 

accurately, so this IBFFM model is considered one of the effective models in studying the nuclear structure of odd-odd nuclei. 

The level density of the odd-odd nucleus 
196

Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which 

accounts for collectivity and complex interaction between quasiparticle and collective modes. The IBFFM spin-dependent 

level densities show high-spin reduction with respect to Bethe formula. This can be well accounted for by a modified spin-

dependent level density formula. 
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1. Introduction 

A difficulty for theoretical investigations is the available 

data on the nucleus 
79

134

55
Cs , which has been the subject of 

intensive experimental investigation [1-3]. 

The interacting boson model has been widely used to de-

scribe even-even and odd-even nuclei throughout the past ten 

years [4, 5]. This strategy was just recently expanded to odd-

odd nuclei [6-10]. The IBFFM is a new model for odd-odd 

nuclei that was presented [6-8]. In a related advance, a few 

dynamical symmetries and supersymmetries, including odd-

odd nuclei as well, have been created [8-13]. 

2. The Interacting Boson  

Fermion-Fermion Model (IBFFM) 

The Interacting Boson Fermion-Fermion Model (IBFFM) 

is an extension of the Interacting Boson-Fermion Model 

(IBFM) where the Interacting Boson Model (IBM) core is 

connected to two fermions. The Hamiltonian of IBFFM is 
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given by [6]: 

^ ^ ^ ^ ^( ) ( ) ( )   IBFFM IBFM IBFM RES IBMH H H H H     (1) 

For odd-even nuclei containing an odd proton and odd 

neutron, the IBFM Hamiltonians are indicated by the sym-

bols ( )IBFMH   and ( )IBFMH   [5]. The IBM Hamiltonian is 

represented by IBMH
 
[4]; the RESH  stands for the residual 

proton-neutron interaction. The IBFFM code includes the 

residual interactions spin-spin, multipole-multipole, spin-

spin-delta, and tensor interaction, which are represented by 

the study of Paar et al., [9]: 

^ ^ ^ ^ ^ ^
RES T MMH  H H H H H    

          (2) 

where 

^
0 0 H 4 V ( )  ( ) ( )    r r r R r R                                                                    (3) 

is a surface delta-function interaction between the proton and neutron, 

^
0 0 H 4 V ( )( . )  ( ) ( )      r r r R r R                                                          (4) 

is a surface contact spin-spin interaction, 

^ H 3V .                                                                                       (5) 

is a spin-spin interaction, 

^
T T 2

( ). ( )
 H V 3 . 

   
 

 
  

  

r r

r

   
 



 
                                                               (6) 

is a tensor interaction, and 

^ *
MM k km km

( )
H 4 V Y ( , ) Y ( , )


 

km

r r

r r

 
   

 


                                                         (7) 

the residual interaction Hamiltonian was calculated as follows: 

^
RES 0 T 2

( ). ( )
 H 4 (r -r ) (r -R )- 3V ( . ) V 3 . 

   
 

 
   

  

r r
V

r

   
        



 
                             (8) 

where 1/3
0 1.2 AR , the parameters TV ,  V ,  V ,  V    

and RV  are constants, and determined the strengths of the 

interactions. 

IBFFM computation for 
134

Cs was performed by coupling 

valence-shell proton and neutron quasiparticles to the IBM 

boson core. 

3. Results and Discussion 

3.1. Energy Spectra 

The boson core fit the even-even nucleus in the transition-

al limit (O(6) limit) with the following parameters: A= 0.7, B 

= 0.8, C= 0.01, and N = 4 (total number of bosons). This 

parameters shows a  dependence on the potential energy 

surface, in qualitative accord with earlier computations for

50Z , 82N  even-even nuclei carried out in the classic 

collective model [14-16]. The low-lying portion of the iden-

tical spectrum of 
132

Xe was replicated in the second phase 

using the renormalized O(6) parameters and the boson space 

truncated to N = 2. This was done in order to minimize the 

scope of computations. The low-lying portion of the identical 

spectrum of 
132

Xe was replicated in the second phase using 

the renormalized O(6) parameters and N = 2 is the truncated 

boson space. This was done in order to minimize the scope 

of calculations. 

The appearance of dynamical symmetries linked to the 

O(6) limit is related to this property [17]. For the SU(3) lim-

it, a comparable circumstance can be found [18]. The esti-

mate for 
134

Cs includes the low-lying valence-shell qua-

siparticle states corresponding to the adjacent odd-even nu-

clei, 
133

Xe and 
133

Cs. These are quasi-protons (g7/2, d5/2) and 
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quasi-neutrons (d3/2, d5/2, s1/2). The energies of quasiparticle 

for the protons g7/2 and d5/2 are 0 and 0.7 MeV, respectively 

with probability of occupation is 0.446 and 0.166. 

The quasiparticle energies for d3/2, d5/2, and sl/2 neutrons 

are 0, 0.7, and 0.9 MeV, with corresponding occupation 

probabilities of 0.785, 0.988, and 0.969 respectively. The 

occupancy probabilities are calculated using the BCS param-

eter proposed by Kisshnger-Sorensen [19]. Conversely, the 

energy levels of approximately 
134

Cs are fitted with three 

quasiparticle energy spacings. This fits with earlier discus-

sions of odd-odd nuclei in the context of the boson-fermion 

method [20]. Specifically, the quasiparticle energy normali-

zation is caused by the boson-fermion interaction, which 

results in relative shifts of the quasi-proton quasi-neutron 

multiplets. As a result, the effective values used to describe 

odd-odd nuclei may differ from the experimental quasi-

particle energies from the neighboring odd-even nuclei. 

In 134
55 79Cs , the four lowest-lying positive-party levels are 

4
+
, 5

+
, 3

+
, and the state at 0.174 MeV, which is designated as 

2
+
 or 3

+
. In the ( , )d p  reaction, these states are significantly 

stimulated by 2L  transfer, and in the (t,  ) reaction, by 

4L  transfer. Assuming these four levels contain sizable 

components with ( 7/2 3/2,  )g d   and the 2
+
 member of the 

( 7/2 3/2, )g d   multiplets, this is consistent with the 

( 7/2 3/2,  )g d   assumption [21]. We have examined in 

IBFFM how parameters affects the multiplet 2
+
, 3

+
, 4

+
, and 

5
+
 splitting that is computed. 

If the dynamical and exchange interaction strengths are 

relatively small ( 0
 , 0 0.3  , 0 , 0 1  ), the estimated 

quadrupole moment of the 4
+
 ground state has a negative 

sign, which is in contradiction with experiment [2]. 

It can be observed from examining the four-dimensional 

parameter space ( 0
 , 0

 , 0 , 0 ) that this pattern is com-

paratively stable within that range of values. However, it is 

important to notice that for 2
7/2( ) 0.5g , this pattern is 

consistent with the parabolic rule [21-23] prediction. 

However, by further increasing the parameter strengths for 

0 , 0 1.5  , the states 4
+
, 5

+
, 3

+
, and 2

+
 (lie on a parabola) 

open up and become the domain of parametrization for 

which we can obtain the experimentally observed pattern, 

with the 4
+
 state acting as the ground state with positive 

quadrupole moment. Table 1 displays the calculated positive-

parity levels of 
134

Cs up to 0.300 MeV. 

The computation employed the following boson-fermion 

interaction parameters: 0 1.2  MeV, 0 0.42   MeV, 

0 2.2   MeV, 0 2.2   MeV, 1.2V  MeV, 0.13 V

MeV. The 4
+
, 5

+
, 3

+
, and 2

+
 states wave functions are domi-

nated by components that have  g7/2 and  d 5/2 configura-

tions. 

Including 11/2 h , the quasiparticle with negative panty, 

additionally, we have determined the occupation probability 

for negative-parity states using Kisslinger-Sorensen 

(v
2
=0.850), attempting to replicate the intricate experimental 

pattern that would indicate a deformed parabola opening up. 

With the exception of 0 0.82   MeV, 2.2   MeV, we 

utilize the same boson-fermion parametrization as for the 

positive-parity states to get the negative-parity levels depict-

ed in Table 1 up to 0.600 MeV. 

Table 1. IBFFM calculations and experimental data [24] for low-lying positive parity energy states for 134Cs nucleus (in MeV units). 

Positive parity states Negative parity states 

Levels Exp. [24] IBFFM Levels Exp. [24] IBFFM 

14  0.0 0.0 18  0.138 0.142 

15  0.0112 0.010 
13  0.1764 0.170 

13  0.0600 0.077 14  0.193 0.211 

23  0.173 0.167 16  0.257 0.289 

11  0.176 0.180 24  0.267 0.271 

33  0.190 0.195 
17

 0.344 0.376 

12  0.197 0210 26  0.382 0.391 

25  0.209 0.218 36  0.434 0.442 
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Positive parity states Negative parity states 

Levels Exp. [24] IBFFM Levels Exp. [24] IBFFM 

43  0.234 0.239 15  0.450 0.481 

22  0.274 0.281 34  0.483 0.510 

32  0.290 0.301 
44  0.570 0.589 

24  0.377 0.367 25  0.613 0.633 

53  0.451 0.433 35  0.624 0.645 

34  0.454 0.476 34  0.643 0.681 

63  0.502 0.511 
12  0.684 0.697 

34  0.519 0.522 23  0.701 0.721 

35  0.539 0.559 22  0.715 0.20 

42  0.579 0.588 
44  0.752 0.755 

52  0.584 0.611 46  0.783 0.792 

It should be emphasized that there are certain uncertainties in the experimental data about the occupation of g9/2, such as 

whether v
2
(g7/2) is marginally over or under 0.52 [20]. As a result, we looked into potential parameterizations with

 
v

2
(g7/2) > 

0.52 in IBFFM. Nevertheless, in this instance, we were unable to replicate the characteristics of the experimentally observed 

low-lying positive and negative-parity multiplets. The 14 state wave function, which was produced by diagonalizing HIBFFM in 

basis ( ,  ) ; ;d dj j J n R I   , has the following biggest components (see Table 2): 

Table 2. The wave function components of some of the lowest lying levels in 134Cs nucleus as calculated in the IBFFM model. 

levels Wavefunction components 

14  7/2 3/2 7/2 3/2 7/2 3/20.57 ( )4,00;4 0.74 ) , )5,12;4 0.13 ( , )4;20;4 ...       g d g d gh d  

18  0.593 7/2 11/2( , )8;00;8g h   7/2 11/20.48 ( , )8,12;8 g h  7/2 11/20.26 ( , )8,20;8 ... g h   

 

The wavefunctions of IBFFM do not show a single com-

ponent, as would be expected for such a complex nucleus, 

indicating that assuming simply a one-quasi-proton-one qua-

si-neutron configuration as a zeroth-order approximation 

would be overly simplistic. Interestingly, though, we get the 

low-lying states that one would anticipate based on the ze-

roth-order approximation ( 7/2 3/2( , )g d  . even if the wave 

functions are more complicated, 2
+
, 3

+
, 4

+
, 5

+
, and 

7/2 11/2( , )g h  2 , 3 ,..., 9 . Furthermore, many characteris-

tics of these states can be roughly explained within the con-

text of the zeroth-order classification and the simple parabol-

ic rule [21-23]. 

3.2. Electromagnetic Properties 

The eigenstates of the IBFFM-2 Hamiltonian enable us to 

determine the electric quadrupole (E2) and magnetic dipole 

(M1) properties of odd-odd nuclei [6]. 

[ 2] [ 2] [ 2] E E E
B FT T T                          (9) 
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the boson operator is written as [6]: 

[ 2] ^E
B BBT e Q                          (10) 

where Be is the boson effective charge in (e. b) units and ^
BQ  

stands for the quadrupole operator is takes by [6]: 

   
[2]

[2] [2] [2]
[2] ~ ~ ~              

Q d s s d d d
 

  (11) 

the fermion E2 operator adopts the form [6]: 

[2]
[ 2] ~

' '

'

1  
5

   
 E

F jj jF

jj

T e a a           (12) 

with Fe standing for the effective fermion charge, Be  is fitted 

to reproduced the experimental 1 1( 2;  2 0 ) B E  value of 

the corresponding even-even boson-core nuclei, as in earlier 

research [12, 13], whereas Fe is assumed to be equal to Be  

for all the investigated odd-mass nuclei. The quadrupole 

moments equation is given by [6, 17]: 

    
1/2

( 2)16
(2 1) / 2 1 1 2 3

5

 
     
 

E
JQ J T J J J J J J


 (13) 

where the reduced electric transition probability ( 2)B E value 

is given as [17]: 

2
( 2)1

( 2; )
2 1

      


E
i f f i

i

B E J J J T J
J

    (14) 

The magnetic M1 transition operator is given by the for-

mula [12]: 

 [ 1] ^[ 1] ^[ 1]3

4
 M M M

B FT T T


       (15) 

The M1 boson operator is proportional to the angular mo-

mentum operator of boson ^[ 1] ^M
BBT g L  with the gyro-

magnetic factor 
12

/ 2Bg   given in terms of the magnetic 

moment 
12

 of the 12 state of the even-even 

nucleus. The M1 operator for fermion part is given by [12, 17]: 

[1]
^[ 1] ~

' '

'

( 1)(2 1)
  

3

 
  
 M

jj j jF

jj

j j j
T g a a     (16) 

Table 3 displays the computed moments of the electric 

quadrupole and magnetic dipole of the energy states corre-

sponding to the lowest-lying positive and negative-parity 

multiplets. 

The usual values for the effective proton and neutron 

charges are   p 1.5se  and   p 1.0se , respectively, whereas 

the boson charge, 3.8vibe , is aligned with the 4
+
 state elec-

tric quadrupole moment. For medium-heavy nuclei, the bos-

on charges range ( 2 4 vibe ) that was formerly employed 

is qualitatively consistent with this result. According to con-

ventional values, the ratios of gyromagnets are 1.0lg , 

0.0lg ,  free
s0.6 gsg  ,  free

s0.5 gsg  , / .Rg Z A . 

The concordance between the measured and estimated mag-

netic moment of the ground state is improved by a little de-

crease in sg . The table illustrates how successfully the g-

values that were used to simulate the magnetic dipole mo-

ments of states 5
+
 and 8 .

 

Now let us discuss the sign of 1Q(4 ) . Upon nearer exam-

ination, the off-diagonal boson contributions of dn 1  are 

responsible for the major partial contributions to 

1Q(4 ) 20 e.b.   

^
7/2 3/2 7/2 3/2( g , )4,00;4 Q ( g , )4,12;4 22 e.bh h     

^
7/2 3/2 7/2 3/2( g , )5,  12;4 Q ( g , )5,  24;4 0.10 e.bh h     

Table 3. Electric quadrupole moments and Magnetic dipole mo-

ments for states in 134Cs. 

levels 

Q(e.b). μ(μN) 

Exp. [24] IBFFM Exp. [24] IBFFM 

14  0.39 0.389 2.99 2.83 

15  - 0.044 2.33 3.33 

13  - -0.55 - 2.40 

12  - -0.39 - 1.99 

18  - 1.33 1.10 1.18 

13  - 0.97 - -1.99 

14  - 0.71 - -0.98 

16  - 0.55 - 0.47 

15  - 0.45 - -0.24 

17
 - 1.32 - 0.89 

http://www.sciencepg.com/journal/ajme


American Journal of Modern Energy http://www.sciencepg.com/journal/ajme 

 

16 

The big components relation (1) and the tiny components 

relation (2) are the off-diagonal matrix elements, respective-

ly. The latter two tiny coefficients contribute 2.9% and 

0.62%, respectively, to the 14 state wave function. 

The computed and experiment ratios are compared in Ta-

ble 4 between the multiplets with the lowest positive and 

negative parity. The reduced transition probabilities for the 

1 15 4  transitions that have been calculated are: 

2 2
1 1B(E2;5 4 ) 0.189  e  b   , 

2
1 1B(M1;5 4 ) 0.0035     N  

There is consistency between the huge 1Q(4 ) and the high 

value of B(E2). The partial contributions incoherence is the 

cause of 2
1 1B(M1;5 4 ) 0.0035     N  decrease. 

The 15 state half-life, 1/2 1T (5 ) 40 ns  , is obtained by tab-

ulating internal conversion coefficients and using the com-

puted B (M 1) and B(E2) values for the 1 15 4  transition. 

This is in reasonable with experimental data of 45 ns. 

With the help of the half-life of the 16 state 

1/2 1T (6 ) 20 ns   using the experimental branching ratio 

- -I(6 5 ) / (6 4 )  I  and the calculated internal conver-

sion constants, this corresponds reasonably well with the 

experimental measurement of 12 ns. These values are calcu-

lated for the -B(E2;6 4 )  and -B(E2;6 8 ) transitions. 

As a result, the distribution of boson charges found from 

matches the available lifetimes [23, 24]. 

Table 4. Electromagnetic transition multiplet for 134Cs nucleus. 

transitions 
Excitation Ener-

gy (MeV) 

relI  

Exp. IBFFM 

1 15 4   0.112 1 1 

1 13 4   0.060 1 0.06 

1 13 5   0.048 0.05  0.03 

1 12 3   1.139 1 0.18 

1 12 4   1.738 0.01 1 

1 14 3   0.173 1 1 

1 15 4   0.741 1 0.9 

transitions 
Excitation Ener-

gy (MeV) 

relI  

Exp. IBFFM 

1 15 6   0.106 - 0.10 

1 15 3   0.931 - 0.008 

1 16 8   1.184 1 1 

1 16 4   0.653 0.03 0.061 

1 17 8   2.056 1 0.92 

1 17 6   0.873 0.23 0.29 

1 17 5   0.767 - 0.009 

4. Conclusion 

In this work the nuclear structure and electromagnetic 

transition for 
134

Cs nucleus within IBFFM model have been 

studied. Theoretically, the transitions between the levels for

I 2  , 0   have the strongest branches at 1 12 3  ,

1 13 4  , 1 15 4  and 1 17 8 ,  1 15 4  , 1 16 8  re-

spectively. The majority of the I 1   transitions are M1 

type, which is consistent with experimental results. 

The single-particle values are similar to the calculated 

B(M1) values between the negative-parity states 
2

1 1 N(M1;7 8 ) 0.665   B  , 2
1 1 N(M1;5 4 ) 1.159   B  . 
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